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a b s t r a c t

The wave and finite element (WFE) method is a numerical approach to the calculation of

the wave properties of structures of arbitrary complexity. The method starts from a

finite element (FE) model of only a short segment of the structure, typically by using

existing element libraries and commercial FE packages. The dynamic stiffness matrix of

the segment is obtained, a periodicity condition applied and an eigenvalue problem

formed whose solution gives the dispersion equations and wave mode shapes. These

define a wave basis from which the forced response can be found straightforwardly.

Although straightforward in application, the WFE method is prone to numerical

difficulties. These are discussed in this paper and methods to avoid or remove them

described. Attention is focused on 1-dimensional waveguide structures, for which

numerical problems are most severe. Three ways of phrasing the eigenvalue problem for

free wave propagation are presented and a method based on singular value

decomposition is proposed to determine eigenvectors at low frequencies. Discretisation

errors are seen to occur if the segment is too large, while round-off errors occur if the

segment is too small. This can be overcome by forming a super-segment from

the concatenation of two or more segments. The forced response is then considered.

The use of a reduced wave basis removes many problems. Direct calculation of the

waves excited by a point force is very prone to poor numerical conditioning but can be

circumvented by exploiting the orthogonality of the left and right eigenvectors.

Numerical examples are presented.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The propagation of waves in structures is of interest for many applications, especially at higher frequencies. Examples
include the transmission of structure-borne sound, shock response and statistical energy analysis. Knowledge of the
dispersion relations, group velocity, reflection and transmission characteristics etc., enables predictions to be made of
disturbance propagation, energy transport and so on. This is true both for 1-dimensional waveguides, which are
homogeneous in one dimension, but whose cross-section may have arbitrary complexity, and also for structures such as
plates which are homogeneous in two dimensions, but whose properties may vary in an arbitrary manner through the
thickness.

In simple cases, analytical expressions for the dispersion equation can be found (e.g. [1,2]). Examples include
1-dimensional structures such as thin rods and beams and 2-dimensional structures such as thin plates. For more complex
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structures or at higher frequencies the analysis becomes more difficult or even impossible, and the dispersion equation is
often transcendental. Finding all the real, imaginary and complex solutions can be difficult and numerical solutions might
be sought. Examples include layered media and laminated, fibre-reinforced, composite constructions or a smooth
automotive tyre, which is homogeneous around the circumference. The equations of motion then become very complicated
at best.

In such cases a numerical approach is very desirable. One approach, considered in this paper, is the wave and finite
element (WFE) method, which combines conventional finite element analysis (FEA) with periodic structure theory. It is an
attractive alternative to the spectral finite element method because conventional FEA methods, commercial packages
and element libraries can be used, whereas in the latter approach special spectral elements must be developed on a case-
by-case basis, which is not a trivial task.

The WFE method starts with FEA of a small segment of the structure. Since conventional FEA can be used for this
modelling, existing element libraries and commercial FE packages can be fully utilised. The mass and stiffness matrices of
the segment are found and post-processed by applying periodicity conditions for the propagation of a time-harmonic
disturbance through the structure. Application of the periodicity conditions results in various eigenproblems whose
solutions yield the dispersion relations for free wave propagation. These wave modes then form a basis from which forced
response can be calculated.

There have been many applications of the WFE method. One difficulty is that numerical problems can occur. This is
particularly true for 1-dimensional waveguides with complicated cross-sections, so that the size of the FE model of the
small segment of the structure can be quite large. This paper concerns these numerical issues and describes ways to
circumvent or reduce them. Attention is focused on the case of waveguides because numerical problems are generally far
greater than for 2-dimensional structures.

For 1-dimensional structures there have been applications of the WFE method for free [3] and forced vibration [4],
to rail structures [5] (and, in [6], using periodic structure theory for a track section), laminate plates [3],
thin-walled structures [7] and fluid-filled [8,9] pipes. Mencik and Ichchou [10] applied the method to calculate
wave transmission through a joint. There have been various applications to FEA of spatially periodic 1-dimensional
structures. These include the earlier works of Orris and Petyt [11,12], Abdel-Rahman [13] and others reviewed by Mead in
[14]. Specific applications include railway tracks [6], truss beams [15] and stiffened cylinders [16,17]. Other authors have
applied periodic structure theory and FEA to 2-dimensional periodic structures, for example Ruzzene et al. [18], who
considered periodic cellular cored structures. Mace and Manconi [19] applied the WFE method to 2-dimensional
homogeneous solids and Manconi and Mace [20] extended the WFE approach to axisymmetric structures, including
fluid-filled cylinders [21].

Various numerical issues occur in the application of the WFE method, but few papers describe them. One form of the
eigenproblem involves forming the transfer matrix of the segment and determining its eigenvalues. This is very prone to
ill-conditioning because there can be both very large and very small eigenvalues. Zhong and Williams [22] present the
eigenvalue problem in a different form, exploiting the symplectic properties of the transfer matrix, and removing
ill-conditioning problems in the eigenvalue problem. Various authors have considered FE discretisation effects and
artefacts that arise because of the spatial discretisation of the structure (e.g. [3,4,23]). These artefacts are characteristic of
wave propagation in periodic structures: spurious pass and stop bands and ‘‘aliasing’’ effects.

This paper concerns these and other numerical issues. First, free wave propagation is considered. In Section 2 the WFE
approach is reviewed. The wavenumbers and wave modes are found by solving an eigenproblem. Various formulations for
this eigenproblem are presented, the most appropriate formulation depending on the form of the solutions desired.
In Section 3 various numerical issues are considered. These include FE discretisation errors and issues that arise from the
spatial discretisation of the structure and consequent periodic structure artefacts—these issues arise if the size of the
element is too large—and numerical truncation of inertia terms in the dynamic stiffness matrix, which occurs if the size of
the element is too small. Concatenation of elements is proposed as a way of overcoming these difficulties. Numerical
problems also arise because the eigenproblem may have both very large and very small eigenvalues. Zhong’s method, and a
method based on singular value decomposition, can be used to ameliorate these. The free waves form a basis on which the
equations of motion can be projected. The basis can be reduced by retaining only the most important wave modes. A well-
conditioned approach to forced response is described in Section 5. This exploits the orthogonality of the left and right
eigenvectors. Numerical examples are presented. In Section 6 the results are summarised and concluding remarks made.
Further details can be found in [24].
2. Free wave propagation and forms of the eigenvalue problem

In this section the WFE formulation for free wave propagation in a waveguide is reviewed. It begins with conventional
FE analysis of only a short segment of the waveguide and application of periodicity conditions. The wavenumbers and wave
mode shapes are found from the solution to an eigenproblem which can be posed in a number of ways. The most
convenient form depends on the nature of the desired solutions, together with the numerical issues discussed in the next
section.
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2.1. Dynamic stiffness matrix and periodicity conditions

Consider a short of segment of length D of a waveguide as shown in Fig. 1. The waveguide is homogeneous along its axis
x, but its properties can vary in an arbitrary manner over its cross-section. The segment is modelled using conventional FE
methods. The equation of motion of the segment for time harmonic motion at angular frequency o can be written as

Dq ¼ f; D ¼ Kþ joC�o2M, (1)

where D is the dynamic stiffness matrix (DSM) and K, C and M are the stiffness, viscous damping and mass matrices,
respectively. The stiffness matrix may be complex if structural damping is present. Time harmonic motion of the form
expðjotÞ is implicit throughout this paper. The vectors

q ¼
qL

qR

( )
; f ¼

fL

fR

( )
(2)

contain the nodal degrees of freedom (DOFs) and forces, the subscripts L and R denoting the left and right sides of the
segment, respectively. (Any internal DOFs can be condensed as described in Section 3.3.) Eq. (1) can be partitioned as

DLL DLR

DRL DRR

" #
qL

qR

( )
¼

fL

fR

( )
. (3)

The partitions are of size n�n, where n is the number of DOFs at the left-hand node of the segment. Since D is symmetric

DT
LL ¼ DLL; DT

RR ¼ DRR ; DT
LR ¼ DRL, (4)

where ð�ÞT indicates the transpose.
Under the passage of a wave of the form exp jðot � kxÞ along the waveguide, Bloch’s theorem [26] implies that the DOFs

are related by the periodicity condition

qR ¼ lqL, (5)

while equilibrium implies that

lfL þ fR ¼ 0. (6)

In these equations the propagation constant

l ¼ e�jkD (7)

describes the amplitude and phase change over a distance D and k is the wavenumber. The wavenumber can be purely real,
purely imaginary or complex, associated with a propagating, a nearfield (evanescent) or an oscillating decaying wave,
respectively.

2.2. Forms of the eigenvalue problem

The equations above lead to eigenvalue problems which can be posed in various ways. The solutions yield the
eigenvalues l, and hence WFE estimates of the wavenumber k, and the eigenvectors / ¼ ½/T

q /T
f �

T. These eigenvectors, or
wave mode shapes, contain information concerning the DOFs and nodal forces under the passage of the wave through the
partitions /q and /f .

2.2.1. The transfer matrix

The eigenproblem is often posed in terms of the transfer matrix T defined such that

T
qL

fL

( )
¼ l

qL

fL

( )
; T ¼

�D�1
LR DLL D�1

LR

�DRL þ DRRD�1
LR DLL �DRRD�1

LR

24 35. (8)

The eigenvalues come in n pairs li;1=li which represent a pair of positive- and negative-going waves. The eigenvalues and
associated eigenvectors can be expressed as ðli;/

þ
i Þ and ð1=li;/

�
i Þ. Positive-going waves are those for which the magnitude

of the eigenvalue is o1, i.e. jlijo1, or, if jlij ¼ 1, the power is positive, i.e. Re jo/H
f ;i/q;i

n o
o0 [3,4] where ð�ÞH represents the
Δ

qL, fL qR, fR

Fig. 1. A segment of a uniform waveguide.
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complex conjugate transpose, or Hermitian. Alternatively the left eigenproblem

wiT ¼ liwi (9)

gives the same eigenvalues, while the orthogonality relations between the left and right eigenvectors can be expressed as

wi/j ¼ didij, (10)

where dij is the Kronecker delta and di is arbitrary. Henceforth it is assumed that the eigenvectors are normalised such that
di ¼ 1.

Writing the eigenproblem in terms of the transfer matrix is convenient and, perhaps, intuitive. However, it is prone to
poor numerical conditioning, especially for waveguides for which the FE model has a large number of DOFs. The eigenvalue
problem (8) then contains both very small eigenvalues l and very large eigenvalues 1/l, representing waves that decay
rapidly (by orders of magnitude perhaps) over the length D of the segment in the positive and negative x-directions,
respectively. Furthermore DLR can be poorly conditioned so that determining its inverse is prone to numerical difficulties.

2.2.2. The wave basis and model reduction

The partitions of the left and right eigenvectors can be used to form the matrices

Uþq ¼ ½/
þ
q;1 /þq;2 � � � /þq;n�; Wþq ¼

wþq;1
wþq;2

wþq;n

2666664

3777775. (11)

Similar expressions hold for U�q ;W
�
q ;U

�
f , and W�f . These matrices, together with the orthogonality relations of Eq. (10),

define transformations between the physical domain, in which the motion is described in terms of q and f, and the wave
domain, in which the motion is described in terms of waves of amplitudes a+ and a� travelling in the positive and negative
directions, respectively. Specifically,

q ¼ Uþq aþ þU�q a�; f ¼ Uþf aþ þU�f a�. (12)

In practice, as in modal analysis, only a number m of the wave modes might be retained, so that the matrices U�q;f and W�q;f
are n�m and m�n, respectively. The number retained can be different at different frequencies. All propagating waves, for
which jlj ¼ 1, must be retained together with the least-rapidly attenuating waves, e.g. for jljo1, all those for which
jlj40:1, or some other user-defined criterion. For example, in Section 6 the retained wave modes are those for which
ImfkDgo1, i.e. jlj4e�1. This is found to give acceptable accuracy. The reasons for reducing the size of the wave basis are
partly that the size of the model is smaller, but primarily that the calculation of the high-order wave modes, which decay
very rapidly with distance (by orders of magnitude over the element length), is very prone to poor numerical conditioning.

2.2.3. Projection of the equations of motion onto the DOFs qL

The equations of motion can be projected onto the DOFs qL by pre-multiplying Eq. (3) by ½lI I� and using Eqs. (5) and (6).
It follows that:

½l2DLR þ lðDLL þ DRRÞ þ DRL�qL ¼ 0. (13)

This quadratic eigenproblem for l can be written as the linear eigenproblem

0 I

�D�1
LR DRL �D�1

LR ðDLL þDRRÞ

" #
� lI

" #
q

lq

( )
¼ 0. (14)

Given the partition /q of the resulting eigenvector, the eigenvector partition for the nodal forces is given by

/f ¼ ½DLL þ lDLR�/q. (15)

This form of the eigenvalue problem is particularly useful for the analysis of free wave propagation in undamped
waveguides (see Section 2.3).

2.2.4. Zhong’s method

A third form of the eigenproblem is that due to Zhong et al. [22,27,28]. The method involves reformulating Eq. (3) in
terms of the displacement vectors and application of the periodicity condition. The eigenvalue problem becomes

ðDLR �DRLÞ �ðDLL þDRRÞ

ðDLL þDRRÞ ðDLR �DRLÞ

" #
q

lq

( )
¼

1

ðlþ 1=lÞ
0 DLR

�DRL 0

" #
q

lq

( )
. (16)

Eq. (16) has repeated eigenvalues of ðlþ 1=lÞ�1 since both l and 1/l are solutions of Eq. (8). Note that the eigenvalues of
most interest are those for which jlþ 1=lj�1 is largest. Corresponding to the repeated eigenvalues, there are two
independent eigenvectors /01 and /02. The eigenvectors associated with the original eigenvalues l and 1/l can be found
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from a linear combination of /01 and /02 [22], i.e.:

/q

l/q

( )
¼ a1/01 þ a2/02. (17)

The eigenvectors /f can once again be found from Eq. (15).

2.3. Desired solutions and the eigenproblem

The choice of the eigenproblem depends to an extent on the form of the solutions desired. For example, if it is desired to
find the values of o2 for a given propagation constant l then Eq. (13) can be rewritten as

½½l2KLR þ lðKLL þ KRRÞ þ KRL� �o2½l2MLR þ lðMLL þMRRÞ þMRL��qL ¼ 0. (18)

This is a standard linear eigenproblem for o2. This approach can be used to calculate the dispersion relations for free wave
propagation in an undamped structure, since then real values of k will lead to n real solutions for o.

There are difficulties if the structure is damped since for a given real o the eigenvalues l are complex, representing
decaying waves with complex wavenumbers. There are also difficulties for general waveguides in finding solutions for
complex wavenumbers. Under these circumstances either of the eigenproblems (8), (13) or (16) might be used, although (8)
and (13) can suffer from numerical difficulties since there may be both very large and very small eigenvalues.

3. Numerical issues

Various numerical issues arise in the numerical calculation of free wave propagation characteristics using the WFE
method and these affect the accuracy of WFE estimates. These issues, and methods to reduce their effects, are discussed in
this section. The first two—FE discretisation errors and periodic structure artefacts—are relevant for all forms of the
eigenproblem and occur in conventional applications of FEA. The last two—truncation of inertia terms in the DSM and
numerical conditioning—are relevant only for the eigenproblems involving the DSM (Eqs. (8) and (16)).

3.1. Finite element discretisation and dispersion errors

At high frequencies FE discretisation errors become significant if the size of the element is too large [25]. As a rule-of-
thumb, there should be at least six elements per wavelength, although the accuracy depends on the element shape
function. Discretisation errors can be reduced by remeshing the structure using a shorter segment.

3.2. Spatial discretisation and periodic structure effects

The WFE model is a lumped, discrete, spring–mass structure which is spatially periodic with period D in the x direction.
At higher frequencies, when the segment length becomes comparable to the wavelength, periodic structure phenomena
arise [14,26]. First, there is an aliasing effect: if kD is a solution to the eigenvalue problem then so, too, is kDþ 2mp for any
integer m, since they yield the same value for l. Thus the wave modes and frequencies are periodic functions of the
propagation constants. This is a well-known effect for periodic structures [26]. Secondly, periodic structures are known to
exhibit a pass- and stop-band structure, in that disturbances can propagate freely only in certain frequency ranges,
otherwise they decay with distance [14,29,30]. For a 1-dimensional element with n DOFs per node there will be n

propagation bands. The bounds of these pass and stop bands are related to the natural frequencies of the periodic element
under various boundary conditions [29,30].

In practical applications these are not important because the FE discretisation is known to be inaccurate for kD41.
The issue is one of determining which solutions to the eigenvalue problem are artifacts of the spatial discretisation and
which are valid estimates of wavenumbers in the continuous structure. This can be achieved by determining the
sensitivities of the estimated wavenumbers to the dimensions of the element, since the bounds of the pass and stop bands
depend on the natural frequencies of the element with certain boundary conditions [29,30]. Thus increasing the size of the
element both decreases the stiffness and increases the mass, hence reducing the bounding frequencies. Wavenumber
estimates which are periodic artifacts are thus very sensitive to the dimensions of the element whereas those which
provide estimates of wavenumbers in the continuum are insensitive to such changes.

Consider the solution for a given propagation constant l at frequency o. The sensitivity of the eigenvalue o2 with
respect to the segment length is [31]

qðo2Þ

qD
¼ /T

j
qK

qD
�o2 qM

qD

� �
/j. (19)

This can be found analytically or by simple remeshing, and is often available in commercial packages. The sensitivity
depends on the element type and shape function. The elements of the stiffness matrix K depend on D and decrease as D
increases. They are proportional to D�n, where n ¼ 1 for a linear shape function (e.g. a rod or a plane stress element) while
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for higher order shape functions (e.g. cubic, describing bending in a thin beam) n41. Similarly the elements of M increases
as D increases and are proportional to Dþm, where m � 1. Consequently the sensitivity is such that if

D
o2

qðo2Þ

qD
¼ Oð1Þ (20)

then the solution is a periodic artefact.

3.3. Round-off errors due to truncation of inertia terms in the DSM

Other numerical errors arise at very low frequencies when an eigenproblem based on the DSM is used. This occurs when
D ¼ K�o2M is calculated numerically using finite precision arithmetic. If Kij is very large compared to o2Mij some digits
associated with the inertia terms in Dij ¼ Kij �o2Mij are truncated after the subtraction, leading to round-off errors and
reduced numerical precision. The number of the digits truncated is approximately nij ¼ log10ðjKijj=jo2MijjÞ. Hence there is
a frequency limit below which these numerical errors become unacceptably large.

These round-off errors could be reduced by remeshing with a longer segment. Alternatively higher precision arithmetic
could be used. A more convenient and less costly approach is to retain the initial mesh (for which D is not large enough)
and form a super-segment by concatenating a number of the original segments as shown in Fig. 2. The internal DOFs are
then condensed. This method does not need re-modelling of a segment since the global stiffness and mass matrices can be
formed from those of the original segment.

When no external forces are applied to the internal nodes the equation of motion of the concatenated segments can be
written as

D̃LL D̃LR D̃LI

D̃RL D̃RR D̃RI

D̃IL D̃IR D̃II

264
375 qL

qR

qI

264
375 ¼ fL

fR

0

264
375, (21)

where gð dÞ denotes that the segment has internal nodes and is not condensed. The subscript I indicates DOFs associated
with the internal nodes. These can be removed using dynamic condensation [32] resulting in

DqE ¼ fE; D ¼ ½D̃EE � D̃EID̃
�1
II D̃IE�, (22)

where

D̃EE ¼
D̃LL D̃LR

D̃RL D̃RR

" #
; D̃EI ¼

D̃LI

D̃RI

" #
; D̃IE ¼ ½D̃IL D̃IR�; qE ¼

qL

qR

( )
; fE ¼

fL

fR

( )
. (23)

Since the stiffness terms are reduced and the mass terms increased, errors due to truncation of inertia terms are
consequently reduced.

While the internal DOFs may be dynamically condensed, computational cost increases because D̃
�1
II must be evaluated

at each frequency. Approximate expressions for the condensation can be developed and these reduce the computation cost.
The inverse of the dynamic stiffness matrix associated with internal DOFs can be expressed as

D̃
�1
II ¼ ðK̃II �o2M̃IIÞ

�1 ¼ ðI�o2K̃
�1
II M̃IIÞ

�1K̃
�1
II . (24)

The first order approximation D̃
�1
II � K̃

�1
II (i.e. static or Guyan reduction [16]) generally gives poor accuracy. However,

Eq. (24) can be expanded in a power series in o2 as

D̃
�1
II ¼ ðIþo

2K̃
�1
II M̃II þo4K̃

�1
II M̃IIK̃

�1
II M̃II þ Ofðo2K̃

�1
II M̃IIÞg

3ÞK̃
�1
II (25)

and after some manipulation it follows that:

D � ðK̃EE � K̃EIK̃
�1
II K̃IEÞ �o2ðM̃EE � K̃EIK̃

�1
II M̃IE � M̃EIK̃

�1
II K̃IE þ K̃EIK̃

�1
II M̃IIK̃

�1
II K̃IEÞ

�o4ðM̃EIK̃
�1
II M̃IE � K̃EIK̃

�1
II M̃IIK̃

�1
II M̃IE � M̃EIK̃

�1
II M̃IIK̃

�1
II K̃IEÞ. (26)

To calculate D, K̃
�1
II and the matrix expressions in parentheses need to be evaluated only once so that the computational

cost is very small.
qL qR qL qR
1qI

2qI
NqI

Δ Δ ΔΔ

Fig. 2. (a) Single segment and (b) concatenated segments.
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3.4. Numerical conditioning and eigenvectors

The eigenproblem of finding o2 for given l (Eq. (18)) is a linear eigenproblem for which no special numerical
conditioning issues arise. The eigenproblem of finding l for given o2, on the other hand, can suffer from poor numerical
conditioning, especially if the forms in Eqs. (8) and (13) are used, because there can be both very small eigenvalues l and
very large eigenvalues 1/l.

The eigenproblem proposed by Zhong et al. (Eq. (16)) [22,27,28] does not suffer from these conditioning problems:
the largest eigenvalues ðlþ 1=lÞ�1 are of interest. However, there can be numerical difficulties in determining the
eigenvectors, especially at low frequencies when the eigenvectors of the wave modes are nearly parallel. These can be
circumvented using an approach based on singular value decomposition (SVD).

The values of a1 and a2 in Eq. (17) may be calculated from (e.g. [4])

�DRL �DLL �DRR � lDLR

lDRL �DRL

" #
a1

q1

lq1

( )
þ a2

q2

lq2

( )( )
¼ 0. (27)

Premultiplication by ½qH
1 lqH

1 � leads to the relationship

a2

a1
¼ �

½qH
1 lqH

1 �
�DRL �DLL � DRR � lDLR

lDRL �DRL

" #
q1

lq1

( )

½qH
1 lqH

1 �
�DRL �DLL � DRR � lDLR

lDRL �DRL

" #
q2

lq2

( ) , (28)

between a1 and a2. Although Eq. (28) is algebraically exact, there may be difficulties in accurate numerical calculation [24].
To avoid these, Eq. (27) can be written as

A
a1

a2

( )
¼ 0; A ¼

�DRL �DLL � DRR � lDLR

lDRL �DRL

" #
q1 q2

lq1 lq2

" #
, (29)

with A being an n�2 rectangular matrix. The problem is equivalent to that of solving an overdetermined set of
simultaneous equations if n � 3. Performing SVD on A gives A ¼ USVH, which can then be written as

A
v11 v12

v21 v22

" #
¼ U

s1 0 0 � � � 0

0 s2 0 � � � 0

" #T

, (30)

where s2 � 0. Taking the second column of Eq. (30) gives

A
v12

v22

( )
� 0 (31)

and hence a1 and a2 are such that

a2

a1
¼

v22

v12
. (32)

This ratio can be evaluated directly from Eq. (31).

4. Free wave propagation: numerical examples

In this section the computational issues are illustrated with two examples for which analytical solutions are known.

4.1. Free wave propagation in a Euler–Bernoulli beam

For a Euler–Bernoulli beam there is a pair of propagating and a pair of nearfield waves (e.g. [1]) with wavenumbers
given by

k ¼ �kB; jkB, (33)

where kB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAo2=EI4

q
is the bending wavenumber of the beam. Here EI is the bending stiffness, r is the mass density

and A the cross-sectional area. Denoting the propagating and nearfield waves with the subscripts p and n the wave
modes are [1]

/�p ¼

w

y
V

M

8>>><>>>:
9>>>=>>>; ¼

1

	jkB

	jEIk3
B

�EIk2
B

8>>>><>>>>:

9>>>>=>>>>;; /�n ¼

1

	kB

�EIk3
B

EIk2
B

8>>>><>>>>:

9>>>>=>>>>;, (34)
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where the subscript 7 indicates the direction of propagation or attenuation. Here w is the translational displacement,
y ¼ qw=qx is the rotation, M ¼ EIq2w=qx2 is the bending moment and V ¼ �EIq3w=qx3 is the shear force.

A 2-noded element of length D, with 2 DOFs per node ðw; yÞ, is taken. Assuming a cubic polynomial shape function, the
mass and stiffness matrices are [25]

K ¼
EI

D3

12 6D �12 6D
4D2

�6D 2D2

sym: 12 �6D

4D2

26664
37775; M ¼

rAD
420

156 22D 54 �13D
4D2 13D �3D2

sym: 156 �22D

4D2

26664
37775. (35)

The eigenvalues and eigenvectors follow straightforwardly (e.g. [24]). The wavenumbers are given by

k1;2 ¼ kBð�1	 ðkBDÞ
4=2880� jðkBDÞ

5=2880 . . .Þ,

k3;4 ¼ �jkBð�1	 ðkBDÞ
4=2880� jðkBDÞ

5=2880 . . .Þ, (36)

where the wavenumbers k1,2 are related to the propagating waves while k3,4 are related to the nearfield waves. The relative
errors in the wavenumbers are OfðkBDÞ4g. The eigenvectors associated with k1,2 are

/�p ¼

1

	jkBð1	 ðkBDÞ4=2880� ðkBDÞ6=10 800 . . .Þ

	jEIk3
Bð1	 ðkBDÞ4=960	 13ðkBDÞ6=302 400 . . .Þ

�EIk2
Bð1� ðkBDÞ4=1440� ðkBDÞ6=18 900 . . .Þ

8>>>><>>>>:

9>>>>=>>>>;. (37)

The errors in the elements of the eigenvectors (37) are OfðkBDÞ4g relative to the analytical solution. Similar expressions hold
for k3,4 with the relative errors again being OfðkBDÞ4g.

Numerical results are now calculated using the element matrices (35). All the calculations were performed using
MATLAB 7.0.4 and double precision arithmetic was used so that numbers are accurate to 16 digits. The relative error in the
predicted propagating wavenumber, jðk� kBÞ=kBj, is shown in Fig. 3. The relative error in the rotational DOF per unit
displacement is shown for the positive-going propagating wave in Fig. 4. In both figures the relative errors are minimum at
around kBD ¼ 0:04. Above and below kBD ¼ 0:04 the relative errors increase. Above kBD ¼ 0:04, the relative errors increase
due to FE discretisation errors (Section 3.1). For the Euler–Bernoulli beam the error increases at a rate proportional to
ðkBDÞ4, see Eqs. (36) and (37).

Below kBD ¼ 0:04 the relative errors increase as kBD decreases. This is due to round-off errors introduced by truncation
of inertia terms when D ¼ K�o2M is evaluated. For the diagonal elements of the matrices the number of digits lost is
approximately

nii ¼ log10ðKii=o2MiiÞ (38)

and if nii ¼ 16 then, if double precision calculations are used, all information concerning the mass matrix is lost. For the
Euler–Bernoulli beam the element matrices are given in Eq. (35) and maxfKii=o2Miig ¼ 420=ðkBDÞ4 for i ¼ 2;4. The
asymptote of the relative error for small kBD is thus proportional to ðkBDÞ�4. As can be seen in Figs. 3 and 4, the inertia
terms are completely rounded-off if kBDo4� 10�4 or so.
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Fig. 3. Relative error in the propagating wavenumber of a thin beam.
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Fig. 5. (a) Plate strip with simply supported boundaries and (b) four element model.
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4.2. Free wave propagation in a thin plate strip

Consider free flexural wave propagation in a plate strip as shown in Fig. 5. The plate is thin, isotropic, undamped and of
width Ly, and the y-wise plate edges are simply supported. For such a plate strip, the wave modes have displacements
proportional to sinðipy=LyÞ. The wavenumber is then (e.g. [1])

k2
xi ¼ �

ffiffiffiffiffiffi
rh

D

r
o� ip

Ly

� �2

ði ¼ 1;2; . . .Þ, (39)

where D ¼ Eh3=12ð1� n2Þ is the bending rigidity, h is the thickness of the plate strip and n is Poisson’s ratio.
The plate is assumed to be steel with Ly ¼ 0:18, E ¼ 2:0� 1011, r ¼ 7800, n ¼ 0:30 and h ¼ 1:8� 10�3, all in SI units.

A segment of width Dx in the x-direction is taken across the width of the strip and meshed using rectangular elements of
dimension Dx �Dy. Fig. 5(b) shows an example using four elements. The mass and stiffness matrices were formed using
ANSYS 7.1. The four node shell element SHELL63 was chosen. Subsequent processing was performed in Matlab 7.0.4 using
double precision arithmetic.

Consider first the model with just four elements across the strip (Fig. 5(b)) with Dx ¼ 18 mm; Dy ¼ 45 mm. After
removal of the in-plane DOFs there are 22 DOFs in the WFE model. The dispersion curves for the i ¼ 1 mode are shown in
Fig. 6. There are two waves: one is a wave which propagates above its cut-off frequency and the other is a nearfield wave.
Figs. 6(a) and (b) show the dispersion curves calculated from the eigenvalue problem using the transfer matrix (8) and
Zhong’s method (Eq. (16)), respectively. The abscissa is the non-dimensional frequency

O ¼
L2

y

p2

ffiffiffiffiffiffi
rh

D

r
o. (40)

The cut-off frequency for the ith mode occurs at O ¼ i2. The ordinate shows the non-dimensional wavenumber, kxLy=p,
which equals �ji for the ith wave mode at O ¼ 0. It can be seen that the results using the transfer matrix (Fig. 6(a)) are very
inaccurate around the cut-off frequency. This is a typical example of deterioration due to the ill-conditioning of the
eigenvalue problem. For the plate strip, the condition number of the eigenvalue problem using the transfer matrix is
Oð1013

Þ while that using Zhong’s method is Oð105
Þ. For a larger matrix (with more DOFs), results using the transfer matrix
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Fig. 6. Flexural waves in a plate strip with simply supported edges. Dispersion curves: — analytical solution; ? the WFE result using (a) the transfer

matrix approach and (b) Zhong’s method.

10-2 10-1 100 101 102
10-6

10-5

10-4

10-3

10-2

10-1

100

101

kxΔx = 1
kxΔx = 1

k-
k x k x

Ω

Fig. 7. Relative error in the wavenumber for the i ¼ 1 wave mode: — 18; – �– 36; and – – 90 element plate strip model. Frequencies where kxDx ¼ 1 are

marked for 18 and 36 element models.
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can completely break down. Further examples can be found in [24]. The errors in Fig. 6(b) as O! 0 are due to the coarse FE
discretisation.

Hereafter only results using Zhong’s method are shown. Fig. 7 shows the relative errors in the propagating wavenumber
of the i ¼ 1 wave mode for models with various numbers of square elements across the plate strip. Three models are
considered: 18 elements ðDx ¼ Dy ¼ 10 mmÞ, 36 elements ðDx ¼ Dy ¼ 5 mmÞ and 90 elements ðDx ¼ Dy ¼ 2 mmÞ. For the
90 element model kxDx ¼ 1 around O ¼ 900. For the other models the frequency where kxDx ¼ 1 is indicated. At the cut-off
frequency ðO ¼ 1Þ the wavenumber kx1 ¼ 0 and hence the relative errors can be very large. The FE discretisation errors
become smaller for the FE models with smaller values of Dx and Dy. However, the round-off errors due to truncation of
inertia terms increase at low frequencies for the 90 element model, for which Dx is smallest.

The relative error in the calculated shear force per unit translational displacement Vxz=w is shown in Fig. 8. The
eigenvector is evaluated using the SVD approach described in Section 3.4. The analytical expression for the shear force is [1]

Vxz=w ¼ jDkxðk
2
x þ ð2� nÞk

2
y Þ. (41)
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Fig. 8. Relative errors in Vxz=w for the plate strip with simply supported edges. Notation is same as Fig. 7.
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The relative errors associated with the 18 and 36 element models are similar to, but somewhat larger than, those for the
wavenumber. At higher frequencies the errors are due to discretisation and decrease as the size of the elements decreases.
However, the error associated with the 90 element model is very large at lower frequencies because kxDx is small, the
matrix size is large and the effects of round-off errors are substantial.

Fig. 9 shows the relative error in the shear force per unit translational displacement Vxz=w for the model with
36 elements and with the eigenvector evaluated directly (Eq. (28)) and using SVD (Eq. (32)). It can be seen that the direct
solution is prone to very large errors, especially at low frequencies.

Fig. 10 shows the relative errors in Vxz=w using the original 90 element model ðDx ¼ Dy ¼ 2 mmÞ and the concatenated
model (two segments, each Dx ¼ Dy ¼ 2 mm). The error using 90 rectangular elements ðDx ¼ 4 mm; Dy ¼ 2 mmÞ is also
shown—this modelled region has the same dimensions as the concatenated model. For the models with 2 mm long
elements it can be seen that concatenating two segments significantly reduces numerical errors at low frequencies. The
errors for the model with 4 mm long elements are larger than those for the concatenated model, with dispersion errors
being noticeable at high frequencies. Furthermore, this also requires remeshing. Finally Fig. 11 shows the relative errors in
the concatenated model using dynamic condensation and the second order expansion of Eq. (26). Differences are only
significant at high frequencies.

5. Forced response using a wave approach

The forced response of a waveguide can be calculated in terms of waves, usually by projecting the equations of motion
onto the wave basis defined in Eq. (12). Four steps are typically involved: determining the amplitudes of the waves in an
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infinite waveguide that are excited by point excitation; calculation of the reflection matrices for boundaries (and also
perhaps other discontinuities); assembling the system equations involving excitation, reflection and propagation; solution
of the equations and determining the physical response by superimposing wave amplitudes at a response point.
The procedure is described in detail in, for example, [34–37]. Here the numerical issues associated with the procedure are
discussed. These primarily concern ill-conditioning, and care should be taken to formulate the problem so that it is well-
conditioned. This normally involves using a reduced wave basis and exploiting the orthogonality of the left and right
eigenvectors as described in Section 2.2.1.
5.1. Determining the amplitudes of directly excited waves

External forces applied to an infinite waveguide generate waves whose amplitudes are given by the vectors eþ and e�

which propagate outwards from the excitation point in the positive and negative x-directions, respectively. Continuity and
equilibrium equations can be written at the excitation point. These can be projected onto the wave basis using equation
(12) to give

Uþq �U�q
Uþf �Uþf

24 35 eþ

e�

( )
¼

0

fext

( )
, (42)
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where fext is the vector of external forces. If all n wave modes are retained then, in principle, the excited wave amplitudes
may be directly determined from Eq. (42) as

eþ

e�

( )
¼

Uþq �U�q
Uþf �Uþf

24 35�1
0

fext

( )
. (43)

However, numerical problems are likely to occur, especially for complicated structures, because the matrix being inverted
can be ill-conditioned.

First, numerical problems are most evident for the highest order wave modes, i.e. those that decay most rapidly with
distance. These are of little interest as far as the forced response is concerned, however. In practice, therefore, only the first
m wave modes might be retained, these being the m wave modes for which |Im(k)| is smallest. The matrix in Eq. (42) is then
no longer square. A pseudo-inverse could be calculated or singular value decomposition used.

Alternatively, the orthogonality of the left and right eigenvectors of the transfer matrix, i.e. Eq. (10), can be exploited.
Premultiplying Eq. (42) by the matrix of left eigenvectors W ¼ ½Wþ

T
W�

T
�T gives

Wþf Wþq
W�f W�q

24 35 Uþq �U�q
Uþf �U�f

24 35 eþ

e�

( )
¼

Wþf Wþq
W�f W�q

24 35 0

fext

( )
. (44)

Noting the orthogonality conditions W�U� ¼ I; W�U	 ¼ 0, it follows that:

eþ

e�

( )
¼

Wþq fext

�W�q fext

8<:
9=;. (45)

Eq. (45) is always well-conditioned.

5.2. Reflection coefficient matrix

Waves aþ incident on a boundary give rise to reflected waves a� such that

a� ¼ Raþ, (46)

where R is a matrix of reflection coefficients. The boundary conditions can always be written in the form

Af þ Bq ¼ 0 (47)

where f and q are the forces and DOFs at the boundary and where A and B are matrices whose elements are in general
complex and frequency dependent. In many cases Eq. (47) can be written in terms of a dynamic stiffness matrix (if A is
invertible) while simple expressions exist for some commonly assumed boundary conditions (e.g. for a fixed boundary
A ¼ 0 and B ¼ I, while for a force-free boundary B ¼ 0 and A ¼ I). The displacement and force vectors in Eq. (47) are again
expressed in terms of waves so that the reflection coefficient matrix becomes

R ¼ �ðAU�f þ BU�q Þ
�1ðAUþf þ BUþq Þ. (48)

Again there are possible numerical difficulties. If only mon wave modes are retained then a pseudo-inverse can be used to
estimate R, while orthogonality between left and right eigenvectors can again be exploited. For example, for fixed and free
boundaries the reflection matrices are

Rfixed ¼ �W�f Uþq ; Rfree ¼ �W�q Uþf . (49)

Again, these are always well-conditioned. Similar expressions exist for waves a� incident on a left-hand boundary.

5.3. Assembly, solution and response determination

Once the wave amplitudes aþ and a� at a location are known, the DOFs and internal forces follow from Eq. (12). The
wave amplitudes can be determined by considering the excitation and reflection relations described above together with
wave propagation relations. The procedure is outlined in more detail in [35,36], while the application of the WFE method to
the analysis of the forced vibration of a tyre is considered in [33].

As a simple example, consider the finite waveguide shown in Fig. 12 excited at the point xe. The wave amplitudes aþ and
g� at the excitation point are the sum of the directly excited waves eþ and e� and the incident waves gþ and a�, hence

aþ ¼ eþ þ gþ; g� ¼ e� þ a�. (50)

Propagation and reflection relations such as

cþ ¼ TðL� xeÞa
þ; a� ¼ TðL� xeÞc

�; dþ ¼ RLd�; c� ¼ RRcþ (51)
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Fig. 12. Wave amplitudes in a finite structure.
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can be written, where RL and RR are the reflection matrices at the left and right ends of the waveguide and

TðxÞ ¼ diagðe�jk1x; e�jk2x; . . . ; e�jkmxÞ (52)

is the wave propagation matrix T that relates the wave amplitudes at two points a distance x apart. Using this formulation,
the magnitudes of the elements of T are all r1, with the elements corresponding to the high order wave modes being
approximately zero. This ensures good numerical conditioning.

Using the above relations, aþ in Eq. (50) can be expressed, after some manipulation, as

aþ ¼ eþ þ TðxeÞRLTðLÞRRTðL� xeÞa
þ þ TðxeÞRLTðxeÞe

�, (53)

and hence

aþ ¼ fI� TðxeÞRLTðLÞRRTðL� xeÞg
�1feþ þ TðxeÞRLTðxeÞe

�g, (54)

where L is the total length of the waveguide. In a similar manner the negative going waves

a� ¼ fI� TðL� xeÞRRTðLÞRLTðxeÞg
�1fe� þ TðL� xeÞRRTðL� xeÞe

þg � e�. (55)

The wave amplitudes at some response point xr are

bþ ¼ Tðxr � xeÞa
þ; b� ¼ TðL� xrÞRRTðL� xrÞb

þ, (56)

and the total response at the excitation and response points can be obtained by substituting the expressions for the wave
amplitudes into Eq. (12). The above solution is always well-conditioned because the matrices being inverted are diagonally
dominant, the elements of T all being r1.

6. Illustrative example of a plate

The forced response of the thin, rectangular plate shown in Fig. 13 is considered. The plate is assumed to be steel
ðE ¼ 2:0� 1011; r ¼ 7800; n ¼ 0:3Þ with Lx ¼ 0:6; Ly ¼ 0:18 and the thickness h ¼ 0:0018, all in SI units. All edges are
simply supported. The locations where the point excitation is applied and the response is calculated are ðxe; yeÞ and ðxr ; yrÞ,
respectively. A loss factor Z ¼ 0:03 is assumed. The wavenumbers and wave modes then become complex.

The response as a sum of modes is [2]

wðxr ; yrÞ ¼
4f ext

rhLxLy

X1
m¼1

X1
n¼1

fmnðxr ; yrÞfmnðxe; yeÞ

fo2
mnð1þ jZÞ �o2g

, (57)

where fmnðx; yÞ ¼ sinðmpx=LxÞ sinðnpy=LyÞ and omn ¼ p2
ffiffiffiffiffiffiffiffiffiffiffiffi
D=rh

p
fðm=LxÞ

2 þ ðn=LyÞ
2g. In the numerical examples 1000

modes were taken. For the WFE calculations the plate strip model of Section 4.2, with 36 elements across the cross-section
ðDx ¼ Dy ¼ 5 mmÞ, was used. The reflection matrices for simply supported boundaries are RL;R ¼ �I.

Fig. 14 shows the magnitude of the input mobility. The non-dimensional frequency O is defined in Eq. (40). Since the
model has 214 DOFs, 214 wave modes can be obtained at each frequency. However, in Fig. 14 a reduced number of wave
modes is used, only the waves associated with ImfkDgo1 being retained for the WFE result. In the frequency range shown,
only about 17 positive- and negative-going pairs of wave modes are retained, these being all the propagating waves and
some of the nearfield waves. Furthermore the excited wave amplitudes are calculated using the well-conditioned approach
leading to Eq. (45). Good agreement can be seen. This implies that the contribution of the strongly decaying waves to the
forced response is negligible—they are extremely stiff and difficult to excite. If the transfer response is of concern, nearfield
waves are even less significant and only a few nearfield waves are important [24].

If instead all the wave modes are included, the calculated result breaks down as shown in Fig. 15. This is because of the
poor numerical conditioning associated with the highest order wave modes, which are the very rapidly decaying waves.
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The contributions of such waves pollute the predicted response. It is therefore important to retain only the wave modes
which are predicted reasonably accurately.

Fig. 16 shows the input mobility calculated using the reduced wave basis but with the excited wave amplitudes
calculated using the direct matrix inverse in Eq. (43). It can be seen that the results using the original formulation (43) are
very inaccurate because of the ill-conditioning. Use of the well-conditioned formulation (45) is therefore necessary.

7. Concluding remarks

While analytical solutions exist for the wave behaviour of simple structures, numerical approaches are desirable for
complicated structures. One approach is the wave and finite element method. It starts from a finite element (FE) model of
only a short segment of the structure. Existing element libraries and commercial FE packages can be fully utilised.
Numerical issues arise, however, and these have been discussed in this paper. The emphasis was placed on waveguide
structures since these suffer more from numerical problems than do 2-dimensional wave-bearing structures, the FE model
potentially being larger. Methods were described to remove or reduce numerical difficulties. Numerical examples were
presented.

The eigenvalue problem for free wave propagation can be phrased in a number of ways, the choice depending in part on
the form of the desired solution. In summary:


 eigenanalysis of the transfer matrix of the segment (Eq. (8)) is very prone to poor conditioning because it involves both
large and small eigenvalues;



 for free wave propagation in undamped structures, the equations of motion can be projected onto the degrees of

freedom qL of the left hand side of the segment, resulting in the eigenvalue problem of Eq. (13) or (18);



 Zhong’s method [22] (Eq. (16)) is recommended: it provides a general, well-posed, form of the eigenvalue problem for

real and complex wavenumbers.

Section 3 described various numerical issues. In summary:


 as in conventional FE, there are discretisation errors; furthermore, the spatial discretisation of the structure and the
consequent spatial periodicity result in the presence of periodic artefacts: spurious solutions which do not represent
wave motion in the continuum. Both of these problems can be avoided if the element size is small enough, typically
such that, for the largest wavenumber in the structure, kD � 1;



 periodic artefacts can be detected by calculating the sensitivity with respect to the element length (Eq. (19));



 if the element length is too small round-off errors due to truncation of inertia terms occur when the dynamic stiffness

matrix is calculated. These can be overcome by forming a super-segment from the concatenation of two or more of the
segments originally modelled;



 if concatenated segments are used, the internal DOFs can be eliminated by dynamic condensation—Eq. (22)—or, if it is

necessary to reduce computational cost, by the approximate scheme described in Eq. (26). Guyan reduction is
ineffective;
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 problems can arise in the determination of the eigenvectors using Zhong’s method, particularly at low frequencies: in
Section 3.4 a method based on singular value decomposition was proposed to overcome this problem (Eq. (32)).

Regarding the forced response (Section 5):


 the use of a reduced wave basis removes many problems—in essence the highest order wave modes are excluded;



 direct calculation of the excited wave amplitudes (Eq. (43)) is very prone to poor numerical conditioning: exploiting the

orthogonality of the left and right eigenvectors (Eq. (10)) circumvents this problem.

In summary, the WFE method, if properly implemented, provides a powerful tool for the numerical analysis of wave
motion in structures. The full power of existing element libraries and commercial FE packages can be fully utilised. The
numerical issues that can arise can be handled using the methods described in this paper, including in particular Zhong’s
method and SVD for the eigenproblem, a reduced wave basis for the modelling, and utilising the orthogonality of the left
and right eigenvectors.
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